HF Radar Sea-echo from Shallow Water
نویسندگان
چکیده
HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.
منابع مشابه
Seafloor Topography Modelling in Northern Adriatic Sea Using Synthetic Aperture Radar
Underwater bottom topography may be visible on Synthetic Aperture Radar (SAR) images through the radar signature of ocean surface currents. Using SAR images and a limited number of echo soundings it is possible to constructs accurate depth maps, greatly reducing the costs of bathymetric surveying. Based on shallow water bathymetry synthetic aperture radar (SAR) imaging mechanism and the microwa...
متن کاملTsunami Arrival Detection with High Frequency (HF) Radar
Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local de...
متن کاملJapan Tsunami Current Flows Observed by HF Radars on Two Continents
Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no detailed verification of f...
متن کاملMethods for the extraction of longperiod ocean wave parameters from narrow beam HF radar sea echo
This paper describes inversion methods for HF radar sea echo Doppler spectra, giving parameters of the ocean wave spectrum in the important long-wavelength region. Radar spectra exhibiting very narrow spikes in the higher-order structure adjacent to the first-order lines are indicative of ocean wave components with a single dominant wavelength. In the simplest method of interpretation these com...
متن کاملWERA HF radar measurements of wind direction in the South Atlantic Bight
Wind direction measurements collected at 4 in-situ anemometers were compared with the WERA HF radar over a 20 month period to assess the accuracy of the radar system. The radar data was interpolated onto the less frequent in-situ time series. An unexpectedly large RMS error of 58.9° was calculated over all stations. A complex correlation coefficient of 0.65 was obtained. An improved correlation...
متن کامل